An Efficient Phone N-Gram Forward-Backward Computation Using Dense Matrix Multiplication

نویسندگان

  • Khe Chai Sim
  • Arun Narayanan
چکیده

The forward-backward algorithm is commonly used to train neural network acoustic models when optimizing a sequence objective like MMI and sMBR. Recent work on lattice-free MMI training of neural network acoustic models shows that the forward-backward algorithm can be computed efficiently in the probability domain as a series of sparse matrix multiplications using GPUs. In this paper, we present a more efficient way of computing forward-backward using a dense matrix multiplication approach. We do this by exploiting the block-diagonal structure of the n-gram state transition matrix; instead of multiplying large sparse matrices, the proposed method involves a series of smaller dense matrix multiplications, which can be computed in parallel. Efficient implementation can be easily achieved by leveraging on the optimized matrix multiplication routines provided by standard libraries, such as NumPy and TensorFlow. Runtime benchmarks show that the dense multiplication method is consistently faster than the sparse multiplication method (on both CPUs and GPUs), when applied to a 4gram phone language model. This is still the case even when the sparse multiplication method uses a more compact finite state model representation by excluding unseen n-grams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms

In this paper‎, ‎an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms‎. ‎We use different drop tolerance parameters to compute the preconditioners‎. ‎To study the effect of such a dropping on the quality of the ILU ...

متن کامل

An Algebraic Formalization of Forward and Forward-backward Algorithms

In this paper, we propose an algebraic formalization of the two important classes of dynamic programming algorithms called forward and forward-backward algorithms. They are generalized extensively in this study so that a wide range of other existing algorithms is subsumed. Forward algorithms generalized in this study subsume the ordinary forward algorithm on trellises for sequence labeling, the...

متن کامل

Espresso: Efficient Forward Propagation for Binary Deep Neural Networks

There are many applications scenarios for which the computational performance and memory footprint of the prediction phase of Deep Neural Networks (DNNs) need to be optimized. Binary Deep Neural Networks (BDNNs) have been shown to be an effective way of achieving this objective. In this paper, we show how Convolutional Neural Networks (CNNs) can be implemented using binary representations. Espr...

متن کامل

Dynamic Programming for NLP

The strategy of dynamic programming reduces the complexity of a search problem which decomposes into frequently-reused instances of the same problem. You encountered dynamic programming for n-gram segmentation in HW4. We have also discussed two more dynamic programming algorithms in lecture: Viterbi and forward-backward. For HW5, you will need to implement the Viterbi algorithm. The forward-bac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017